Threshold Models of Human Decision Making on Optimal Stopping Problems in Different Environments
نویسندگان
چکیده
Optimal stopping problems require people to choose from a sequence of values, under the constraint that they cannot return to an earlier option once it is rejected. We study how people solve optimal stopping problems when the distribution of values they must choose from is not uniform, but is constructed to contain many high values or many low values. We present empirical evidence that people adapt to both sorts of environments, and make decisions consistent with using threshold-based models. We then fit a threshold model to our data, inferring the threshold people use, and finding they usually decrease their thresholds faster than is optimal as the sequence progresses. We also present empirical and modelbased evidence that people generally do not adjust their thresholds on the basis of the values they see.
منابع مشابه
A Hierarchical Cognitive Threshold Model of Human Decision Making on Different Length Optimal Stopping Problems
In optimal stopping problems, people are asked to choose the maximum out of a sequence of values, under the constraint that a number can only be chosen when it is presented. We present a series of threshold models of human decision making on optimal stopping problems, including a new hierarchical model that assumes individual differences in threshold setting are controlled by deviations or bias...
متن کاملThe Effect of Goals and Environments on Human Performance in Optimal Stopping Problems
In optimal stopping problems, people are asked to choose the best option out of a sequence of alternatives, under the constraint that they cannot return to an earlier option once it is rejected. We examine human performance on variations of the optimal stopping problem, with different environments and with different goals. Specifically, we consider environments that have relatively high or low ...
متن کاملComparing different stopping criteria for fuzzy decision tree induction through IDFID3
Fuzzy Decision Tree (FDT) classifiers combine decision trees with approximate reasoning offered by fuzzy representation to deal with language and measurement uncertainties. When a FDT induction algorithm utilizes stopping criteria for early stopping of the tree's growth, threshold values of stopping criteria will control the number of nodes. Finding a proper threshold value for a stopping crite...
متن کاملA Hierarchical Bayesian Model of Human Decision-Making on an Optimal Stopping Problem
We consider human performance on an optimal stopping problem where people are presented with a list of numbers independently chosen from a uniform distribution. People are told how many numbers are in the list, and how they were chosen. People are then shown the numbers one at a time, and are instructed to choose the maximum, subject to the constraint that they must choose a number at the time ...
متن کاملBayesian Sequential Detection With Phase-Distributed Change Time and Nonlinear Penalty—A POMDP Lattice Programming Approach
We show that the optimal decision policy for several types of Bayesian sequential detection problems has a threshold switching curve structure on the space of posterior distributions. This is established by using lattice programming and stochastic orders in a partially observed Markov decision process (POMDP) framework. A stochastic gradient algorithm is presented to estimate the optimal linear...
متن کامل